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SUMMARY

The solutions to the problem of the near earth satellite with-

out drag obtained by applying the von Zeipel method and the

modified Hanse;t method are compared. Formulas are derived

for osculating e_ements when the modified Hansen theory is ex-

pressed in terrr s of orbital true longitude. Differences in the

arbitrary constants are tabulated. Transformations that relate

the time elemen_ of the two theories are also given.
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INTRODUCTION

Widely different theories are often used in computing orbits of artificial satellites. It is of in-

terest to examine the results of dif[erent theories when they are applied to the basic problem of the

near earth satellite without drag. Of special importance are the major theories of celestial mechan-

ics introduced by Brouwer 1 and by Musen 2.3 in solving this problem.

Brouwer 1 applied the method of von Zeipel to the near earth satellite problem and obtained ana-

lytic representations for the osculating Delaunay and Keplerian elements. The results are given by

Brouwer to order J2 in the elemen_:s and J2_ in the mean motions, where J2 is the coefficient of the

second zonal harmonic of the earthWs potential, and equals the quantity 2k 2 appearing in the articles

of Brouwer and Musen. Musen 2.3, on the other hand, first modified Hansents method, then by ap-

plying it to the same problem of the near earth satellite without drag, showed how to obtain the posi-

tion of the satellite in a semi-analytic manner to any prescribed order of J2- The solution of the

satellite problem in terms of orbit LI true longitude by Musen 3 L'; considered below.

The results obtained by Brouwer are given in a form convenient for comparison with the results

of many authors. Indeed Kozai 4, Garfinkel s and others have readily compared their solutions with

Brouwerts. However, since Musents formulations of the problem are intended to provide numerical

results of high precision for the position of a satellite, explicit analytic formulations of the pertur-

bations of the elements do not appear in his articles. For that reason, formulas are given here for

elements derived from the modified Hansen theory in terms of orbital true longitude so that the re-

sults of Musen and Brouwer can be compared.

As would be expected, the di:ferences between the two theories are exhibited in the respective

choices of the arbitrary constants and in the arguments of the trigonometric terms. The constants

of both theories are discussed and presented in tabular form. The transformations of the variables

of the angular arguments are presented. Therefore, when the ,;olutions to the satellite problem are



carried out to the same order in J2 by the methods of Brouwer and Musen, full correspondence can

be obtained by taking into account the differences in the constants and the angular variables.

THE OSCULATINGELEMENTS

The definitions of the osculating elements appearing in Brouwer's article may be found in any

text on celestial mechanics--for example, Brouwer and Clemence 6. It is, moreover, a relatively

simple matter to find expressions for the osculating elements of the modified Hansen theory as ex-

pressed in terms of orbital true longitude; these differ from the corresponding formulas of the

modified Hansen theory as expressed in terms of eccentric anomaly given by Bailie and Bryant 7,

since the W functions differ slightly. To indicate how such representations of osculating elements

are derived, we shall now review briefly some of the concepts and definitions of the modified Hansen

theory as expressed in terms of orbital true longitude.

DEFINITIONS FROM THE MODIFIEDHANSENTHEORY

When the differential equations given in Musen's articles 2, 3 are solved, expressions for the

components .E=, T, and _, of the _ function, for the x parameters, and for the perturbation of the pseudo-

time n o Sz result. The functions E, T, and • are expressed in terms of orbital true longitude and are

related to osculating elements by the formulas

h 0 h

= - 1 ---fi- + 2 h_-° ,

h (h0)T = 2_-_0 e cos ¢ - 1 +T eo

h
_g = 2K- e sin q5

-0

(1)

Here -_ is the deviation of the osculating true anomaly from the true anomaly of the auxiliary ellipse,

e is the osculating eccentricity, and h iS proportional to the reciprocal of the Delaunay variable G;

that is,

G - _ (2)-

The quantities h 0 and e 0 are the elements of Hansen's auxiliary ellipse.

The ,kparameters are defined by the formulas

i

_, = sin _ cos N

i
}v2 = sin-_ sin N

_3 = cos _- sin K

i
_4 : cos-_ cos K.

J

(3)



Here i is the osculating angle of i:mlination of the orbit plane a:nd corresponds to I in Brouwer's

development. The quantities K and N are Fourier series of the order of the perturbations and do not

contain secular terms.

The angular variables are given by the formulas

f : cv - 7r 0 - _b , /

c_ = (g - c)v * (oro - _o) + _b + K + N ,

8 = (1 - h')v + 8o + K - N

(4)

The quantities f, _, and 8 are the osculating true anomaly, argument of perigee, and longitude of the

node, respectively. The quantitie_ g, c, and h' in the right hand side of Equations 4 are proportional

to the mean motions of the argument of latitude, mean anomaly, and the longitude of the ascending node,

respectively. The quantities % arid 8o are prescribed constants.

The time element of the auxil:ary ellipse is denoted by the symbol z and is often called the

pseudo-time. When orbital true longitude is the argument, the mean anomaly of the auxiliary ellipse

is c(n0)H z. The symbol no appea:cs with different meanings in the articles of Brouwer and Musen;

therefore the symbol (no) a is adopted here instead of the no appearing in Musen's article. The quan-

tity Sz is the deviation of the pseudo-time from the unperturbed satellite time.

OSCULATINGELEMENTSFORTHE MODIFIEDHANSENTHEORY

By inverting Equations 1 and 3 it is readily found that

- i_O- 1 -3+ _-_ - + ...

1 1(4 3iF2 )e : e 0 +-_ (V- eoE ) +_ %_-_2 _ 4ET + -- + ....
e o

G - cos i -- cos i 0 1 +_-+_-+ ...

Similarly, the quantities associate2 with the angular variables are found to be

- 2% + _ - + ....

K + N = _ _--:- - i 0
0 10 _'_ COS

_o_ _- _i_ -T

;% ;_2 E

K - N = io i0 - ]-_ cos i o
cos-_- sin 2

;% ;_2

i o
c°s3 -T sin

- X3 _2

10

cos 3 _- Sin 3

+ • • ° I

+ ....

(5)

(6)



It is instructive to derive an expression for the perturbation of the radius vector of the satellite

using Equations 5 and 6. This leads to an important result already given in the modified Hansen

theory. If u denotes the reciprocal of the radius vector of the satellite, and s the deviation of an

osculating element from its value in the auxiliary ellipse, then

But we have

Su = u - u = h 0 "_ $ + _'_ Se + _ _f (7)

U

h 2

_-(1 + e cos f)

_u h
_h- = 2_(1 + e cos f)

h 2
: -- cos f/_

_u eh 2
_- = --- sin f/_

ho_
- ))u = -- (1 + e 0 cos#

(8)

where f = Y - ¢; and from Equations 5 and 6 we have, to order J2,

s = -_ .

T-eo_
Se - 2

Sf = -¢ = - 2%

(9)

Substituting the required quantities from Equations 8 into Equation 7 we get, to order 32,

1 ho_ -. (10)
Su 2 F W +--_-u ,

where W = -= + T cos )- + _ sin f- , which is consistent with the results of the modified Hansen theory.

COMPARISON OF RESULTS TO THE FIRST ORDER IN J2

By solving the equations given by Musen, first order analytic solutions for the quantities --, T,

_, and the x parameters were obtained by Bailie and Fisher 8. When the analytic expressions for =_,



T, and • are substituted into Equations 5 immediate agreement is obtained with the periodic part of

the elements G, e, and I obtained in Brouwer's soluUon. Similarly, agreement for the periodic part

of the expressions for the angul:tr variables _: and _ given by l:'.quation 4 with the variables _ and h

can be readily obtained, when the analytic results of Bailie and Fisher are introduced.

It has now been indicated th _t the periodic part of the solution of the elements of the satellite

problem by Brouwer and Musen agree to the first order in J2- Although differences in the arbitrary

constants and arguments of the lrigonometric terms do exist, they do not appear in the first order

solutions for the trigonometric parts of the elements since they have J2 as a multiplier. These dif-

ferences are exhibited in the terms of the second order and are discussed below.

THE ARBITRARY CONSTANTS OF THE THEORIES

Differences of order J2 app._ar in the arbitrary constants of the solutions of the satellite prob-

lem by Brouwer and by Musen. The quantities c o and c_ cos f in Musen's work are added to the

function and consequently the constants c o and c_ are added to - and T; These constants thus occur

in the solution for those elements derived from -= and T. Constants also appear in the solution for

the elements by Brouwer. In order to compare the two theories the constants of the elements G, e,

and cos i with respect to true as_omaly are found from BrouwerTs development to order J2" Similarly,

constants with respect to orbital true longitude are found in the article of Bailie and Fisher 8 and

are listed in Table 1.

Table l

Constants Appearing in the Satellite Theor;es(Order J 2 ")

Quantity

H
: cos i

mean motion of

mean anomaly

Brouwer's Notation

(von Zeipel method)

G tl

_:J2 (1 - 3 ¢o_2 I")
e" (5 - 3_"2 - 2V "3)8e "G" 4

COS I II

dt

Musen's Notation

(modified Hansen method)

c 1 - e0¢ 0

e0 + 2

i0(,

°(°0).



The constants appearing in Table 1 are defined as follows:

d/ " 3 noH? J2

--_t = no 4 L' G "3 (1 - 3 cos 2 I")

C o

3 h04

= 1 +_-J2-- _ (1- 3 cos 2 io) ,

3 ho'(,-3cos2 o)(4-2
= _- J2 -fi

1 J_ h0*

ct 4 e 0 t2

(11)

These values are taken from the article of Brouwer and from the article of Bailie and Fisher s.

The relations between the mean motions of the argument of perigee and the longitude of the node

in the articles of Brouwer and Musen are given by the formulas

dg" 1

= (no) M (g - c)

dh" (1 h'--_- -- (no)" - )

(12)

Formulas to order J_ for these mean motions are given in the article of Brouwer and the article of

Bailie and Fisher. At first sight the terms in J2 _ seem to disagree. However, by taking the rela-

tionships given in Table 1 into account, full agreement is obtained to order J22 in the mean motion of

the variables as defined in Equations 12.

The differences in the constants given in Table 1 will also be exhibited in the coefficients of

trigonometric terms of order J_ in the elements derived by the methods of Brouwer and of Musen.

Additional differences appear in these coefficients and are due to differences in the arguments of the

trigonometric terms. We shall now describe these.

THE TIME ELEMENTS OF THE THEORIES

In the yon Zeipel method adopted by Brouwer the true anomalies f and f' appear; Brouwer then

shows how to relate these true anomalies to the true time of the satellite. In the Hansen method

modified by Musen the true anomaly of the auxiliary ellipse ¥ (or _ as it is denoted by Ballie and

Fisher s) appears; Musen shows how to relate T to the true time. The true anomalies in the two

theories differ by trigonometric terms of order J2; consequently, it is logical to apply Taylor's

theorem to find the relation between these two true anomalies.



Werecall thatthetrue an,_malyis afunctionof theeccentricityaswell asof themeananomaly,
asis shownby the equation of the center. 6 Also, we have

fo,c = T-_

: e 0 + See osc

(13)

where fosc and eos c are the osculating true anomaly and osculating eccentricity, while¢ and _e are

of order J2.

The quantity f appearing in Brouwer's article is related to the osculating mean anomaly l by

the equation

d_f )-_ (1 + e o f)2 (14)d/ = ( ] - eo2 cos

We then find by Taylor's theorem that

3f Se) _FF(f-) : F(f) + _b + 3_ _-_ (15)

where

De_f - ('2 +e° c---°s f) sit'fl - e02 (16)

Equation 15 transforms a [unction of the true anomaly of the auxiliary ellipse, f, to a function

of the true anomaly f appearing in Brouwerts article. To extend this transformation so that a func-

tion of _- may be expressed in terms of the mean true anomaly f', we simply apply Taylorts Theorem

again to obtain

( 3f dt ) 3FF_f-) : F(f') + ¢ +-- _e +-- _/3e d! _ (17)

to the first order in J2" Here f' is the mean true anomaly in the sense given in Brouwer's article

and may be evaluated by KeplerVs equation for a given instant of time. The perturbation _ is the

deviation of the mean anomaly from its mean value and is given by the formula _ = - _S_/3L' in

Brouwer's article. It may also be found from the variation equation in terms of orbital true longi-

tude by the methods adopted in the article of Bailie and Fisher.

In particular, if F(f) :: sin T , we have

sin ( = sin f' + _ +-- Se +--_ cos f- (18)
3e cl/

The multiplier of cos f- is of order J2, so that when f' is _:iven f-may be found by successive

approximations.



It is possibleto arrive at Equation17by approachingthetransformationfrom a somewhatdif-
ferentpointof view. Fromtheworkof E. Brown9wehave

df _f
Sf = _ St + _ _e (19)

Since the symbol s refers to the deviation of the osculating element from the corresponding ele-

ment of the auxiliary ellipse, we have

St = l - [C(no)H z + 1o"] (20)

where the quantity in brackets is the mean anomaly of the auxiliary ellipse. Since by Table 1

d/"
C(nO) H = --aT (21)

and

we have, from Equation 20,

z - t = _z ,

E .)] cl5l = l - --d-_t + I0 - c n o H Sz

When only the short period terms of the mean anomaly are considered, we have

(22)

Or, substituting in Equation 19, we find

df hf df
-aT-c(n0). sz : ¢ +_ _e +-dT-Zv , (24)

which equals the multiplier of bF/bf in Equation 17. Consequently, Equation 17 may be thought of as

transforming a function of the pseudo-time z to a function of time t (to order J2) by the relation

_F
F(z) : F(t) + _-_ Sz (25)

In order to complete the transformation, the argument of perigee is taken into consideration.

From Equations 4 it is seen that a term proportional to the equation of the center must be included

in the transformations. It then follows that

where

bf df ) "_F _FF(f,_) = F(f',g') * q_ ÷-_ Se +-_" A/ -_ + (g - c)(f - l)-_ , (26)

: <_-c)v+ (_0-eo)



If F(f' ) and F(f'. g' ) in the right-hand sides of Equations 17 and 26 represent periodic terms of

order J2, then the subsequent terras in the right-hand sides of these equations will be of order J22.

Thus, by means of Equations 17 and 26, it is possible to derive comparisons of the periodic terms

of the two theories when they are both developed to order ]/.

Kozai 1° has extended the woek of Brouwer 1 to order J22 Ln the periodic terms and J23 in the

secular terms. Unfortunately, a corresponding extension has not been made of the analytic results

of Ballie and Fisher 8. However, for the purpose of checking the formulas of the present paper the

author has obtained the development of only the short period terms of the Delaunay variable G to

order J22 in terms of orbital true longitude. This was done so that comparison could be made with

the corresponding terms obtained by Kozai using the method of von Zeipel. For this variable,

agreement was obtained.

SUMMARY AND CONCLUSIONS

The solutions to the problem of the near earth satellite wilhout drag given by Brouwer 1 and by

Musen 2.3agre e when carried out to the same order in ]2- Due allowance must be made for the dif-

ferences in the constants and in the ways of expressing the time element.

The differences in the arbiteary constants have been tabulated here to the first order in J2,

and transformations have been given relating the true anomaly of the auxiliary ellipse to that of

the satellite.

.
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AppendixA

Analytic Results from the Modified Hansen Theory

By solving the equations giwm by Musen*, first order analytic solutions for the quantities ._, T,

_, k2, ;_3, g, l -h', and g -c were obtained by Bailie and Fisher*. These are listed here for the con-

venience of the reader.

To conform to modern nota:ion, the quantities k2 , k3, and k4 appearing in the modified Hansen

theory are here designated by J2/2 , J3/2, and -J4/8 respectively. In formulas A1 through A5 the

quantities g and c introduced by integration have been restored, along with the quantity _; these were

set equal to unity by Bailie and Fisher who were then concerned only with terms of order J2"

3 h0, E--" = _-J2-- (1 - 3 co,; 2 i0) 2-
_z2

Ico sg2_ cos (_ * 2_) cos (¢ - 2n)
9 h°4 (1 - i0) + e 0 + e 0

-4-J2 _ c°";2 c + 2g 2g - c

- i2 02 - 1 --5 cos 2 cos (2_ - 2_) 2 J2 # e 0 sin i 0 sin (_ - _)

15 J4 h°¢ I 8 c°s4 10 1 (A1)+ 16 J2 _2 %2 1 - 3 cos 2 i o - 1 - 5 cos 2 i o cos (2_ - 2_) ;

I2 8% + 4e03 7 1 J2 ha4 (I 3 cos 2 to)
1 hf (1 - 3 cos 2 ' _ e 0 +

T: _-J2_ _o/ i+ 1fi--Z-_o2j 8 c /3

1 h°4 (1- cos 2 i 0)18%+ 6e 0 cos 2_ + %2 cos 34 + 1_J2 _ _cos 2_

I(12 + 3eo2 ) cos

*Musen, P., "Application of Hansen's Theo U to the Motion of an Artificial Satellite in the Gravitational Field of the Earth," 1. Geopbys.

Res. 64(12):2271-2279, December 1959.

TBailie, A., and Fisher, D., "An Analytic Representation of Musen's Theory of Artificial Satellites in Terms of the Orbital True Longitude,"

NASA Technical Note D-1468, January 1963
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cos (_ - 2_7) cos (2_ + 2_7)
+(28+ co, + (4 e:) c+c + 2g + - + 12e0

+_ 20% + %3 _ I L 5 co-_2 i 0 3?#-

\

co, (3_-2_)_ 1 J3%= (2 +_o _) si. i o sin (#-
+ e02 3c - 2g -_ "]'2

5 J4 hf V
(2eo + %3)[1-

+ 16 J2 _2 L
3 COS 2

8 cos 4 i 0 q

J cos (2_ - 2_)
_o 1 - 5 cos 2 i o

(A2)

J2 ho41 f- q

(l - 3 cos 2 io) L(12 + 9e02 ) sin _ + 6e 0 sin 2_ + e02 sin 3_J8 c _z2

/

3 h°4 (1 - cos 2 io))12e o sin 2_ (28 + 11% 2) sin ({ + 2"r/)

+ 16-J2_ { _+ c + 2g

/4 - 7e2_o) sin (_ - 2D) + 12eo sin (2_ + 2_)+
2g-c c ÷g

1 _ (lOOeo - 20eo3) c°s4 io +

+"3-- 0% + eo a - 20e° c°s2 i°- 1 - 5 cos 2 i o
L

+ 5e_ sin3c(3_+ 2g+2_) + e° 2 sin3_(3_= _g2_)}

J3 h_ [ 2eo2 c°s2 i_+-_2-=_-- sin i 0 1 - 1 7; cos 2 _ cos (e - _)

100eo3 cos 6 io 1 - coVToi

5 J, "0' F

+ 16 J2 .2 _eo + eo 3 -(6e0 +5eoa)c°s2 io

(16e o +12e_) cos 4 i o

1 - 5 cos 2 i o + _---SCOS 2 i0) 2J sin (2_- 2_)
(A3)

}%2

3 ho 4 io sin _ sin 2_ sin ({ + 2_)

= 8 J2-_ sin i o cos i o cos T 2e o c g eo c + 2g

eo 2 (8 + 3 cos i 0 - 18 cos 2 io)
sin (¢ - 27) + ....

+ eo 2g - c 6_ 5 cos 2 io)

12



+ 12(1 - =, c°s_ i0} _

_1 io - 3 cos 2 io
1 J3 hg ko - 2 cos .... _]c.os

s J, h____o' ioi:-7 _o__ i_?
- 1-"6-J--_ /_2 eo 2 sin i 0 co; t0 cos"_- 5 co s2 io

(5 + _o_ _o - 6 _o__ %) (1 - 7 _o__ i0) 1 _. <2e - 2_

6 :os 2 _jsin (2_ - 2_)

(_ - -0)

(A4)

%'3
_°I _ _-_.o_3j h°+ cos i o sin_ 2% c -

- 8 2-_ sin i o

+ e°_ I e_ (8- 3 cos i o - 18 cos 2 it/

og(5-_o_ _0-6 :o_,_o)Ct- _s_l _ (2_- _>1
+ t2(t - 5coQ io) 2

1 Js ho2 io/t +2 cos i o i_ 3 c°s2io__.___ _+a:E-;- *o _°= _o =_- 7- s_o=_ _0 .)co= (e - ,)>

_, cos,,0
5 j,h_

+ _ Ja _2 eo2 sin i o c,)s i o sin 2 L1 S cos 2 io

t5 i o - 6 cos' i o) (1 ° 7 c os2 io) _ 2p) '- cos _ _ _, , , sin (2_ - '
- 2"(I- 5 c°s2 io) 2 ]

(AS)

1 3j ho4 1_ h°8 (2 + 3eg)(3 cos _ i0 " 7 cos' io)
+2 _--i _°=_ _° +-_rJ,-_

(A0)

13



I -h I
3 ho 4 15 hoS

2 J2 _ cos i o -_-J4 _ (2 + 3%2) 3 cos i 0 - 7 cos a i0)

g -- C

where

is h°_[(15 9eo_ 126%_) io3 hf (1 - 5 io) - i-2-8 J4-_ + ) - (144 + cos 2- 4---J2 -_ c°s_

+ (196 + 189eo a) cos 4 iol

- '-_J: 7 1o_-_4¢_- o: •_o:) - (1_oo- o_ _-_o +,_oo:)_o__o

= cv - So and _ = gv - 0 o

(AS)


